Logo Header
  1. Môn Toán
  2. nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x))

nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x))

Nội dung nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x))

Tài liệu gồm 43 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, trình bày nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)), từ đó giúp giải nhanh một số bài toán nâng cao liên quan đến hàm hợp trong chương trình Giải tích 12.

Bước 1. Tìm tập xác định của hàm g = f(u(x)), giả sử ta được tập xác định D = (a1; a2) ∪ (a3; a4) ∪ . . . ∪ (an−1; an). Ở đây có thể là a1 ≡ −∞; an ≡ +∞.

Bước 2. Xét sự biến thiên của u = u(x) và hàm y = f(x) (bước 2 có thể làm gộp trong bước 3 nếu nó đơn giản).

Bước 3. Lập bảng biến thiên tổng hợp xét sự tương quan giữa [x; u = u(x)] và [u; g = f(u)]. Bảng này thường có 3 dòng giả sử như sau:

x a1 a2 · · · an−1 an

u = u(x) u1 b1 b2 · · · bk u2 · · · un−1 un

g = f(u(x)) g(u1) g(b1) g(b2) g(bk) · · · g(u2) · · · g(un)

Cụ thể các thành phần trong BBT như sau:

+ Dòng 1. Xác định các điểm kỳ dị của hàm u = u(x), sắp xếp các điểm này theo thứ tăng dần từ trái qua phải, giả sử như sau: a1 < a2 < . . . < an−1 < an (xem chú ý 1).

+ Dòng 2. Điền các giá trị ui = u(ai) với (i = 1, n). Trên mỗi khoảng (ui; ui+1), i = 1, n − 1 cần bổ xung các điểm kỳ dị b1; b2; . . .; bk của hàm y = f(x). Trên mỗi khoảng (ui; ui+1), i = 1, n − 1 cần sắp xếp các điểm ui; bk theo thứ tự chẳng hạn: ui < b1 < b2 < . . . < bk < ui+1 hoặc ui > b1 > b2 > . . . > bk > ui+1 (xem chú ý 2).

+ Dòng 3. Xét chiều biến thiên của hàm g = f(u(x)) dựa vào BBT của hàm y = f(x) bằng cách hoán đổi: u đóng vai trò của x; f(u) đóng vai trò của f(x). Sau khi hoàn thiện BBT hàm hợp g = f(u(x)) ta thấy được hình dạng đồ thị hàm này.

Bước 4. Dùng BBT hàm hợp g = f(u(x)) giải quyết các yêu cầu đặt ra trong bài toán và kết luận.

Chú ý 1:

+ Các điểm kỳ dị của u = u(x) gồm: Điểm biên của tập xác định D, các điểm cực trị của u = u(x).

+ Nếu xét hàm u = |u(x)| thì trong dòng 1 các điểm kỳ dị còn có nghiệm của phương trình u(x) = 0 (là hoành độ giao điểm của u = u(x) với trục Ox).

+ Nếu xét hàm u = u(|x|) thì trong dòng 1 các điểm kỳ dị còn có số 0 (là hoành độ giao điểm của đồ thị hàm số u = u(x) với trục Oy).

Chú ý 2:

+ Có thể dùng thêm các mũi tên để thể hiện chiều biến thiên của u = u(x).

+ Điểm kỳ dị của y = f(x) gồm: Các điểm tại đó f(x) và f0(x) không xác định; các điểm cực trị hàm số y = f(x).

+ Nếu xét hàm g = |f(u(x))| thì trong dòng 2 các điểm kỳ dị còn có nghiệm của phương trình f(x) = 0 (là hoành độ giao điểm của đồ thị hàm số y = f(x) với trục Ox).

+ Nếu xét hàm g = f(u(|x|)) thì trong dòng 2 các điểm kỳ dị còn có số 0 (là hoành độ giao điểm của đồ thị hàm số y = f(x) với trục Oy).

Chia sẻ và giới thiệu thông tin nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)) mới nhất

nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)) đã chính thức diễn ra. Môn Toán là một trong những môn thi quan trọng, đánh giá năng lực toán học của các học sinh trước khi bước vào giai đoạn tiếp theo của hành trình học tập.

Trang web MonToan.vn đã nhanh chóng cập nhật và chia sẻ đề thi chính thức môn Toán trong chuỗi Khảo Sát Và Vẽ Đồ Thị Hàm SốToán 12. Không chỉ cung cấp đề thi, MonToan.vn còn đưa ra đáp án và lời giải chi tiết nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)), giúp các thầy cô giáo, các em học sinh và các bạn học sinh có thể dễ dàng kiểm tra kết quả và phân tích cách giải.

Việc chia sẻ đề thi chính thức và lời giải chi tiết nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)) giúp các thầy cô giáo có thêm tài liệu tham khảo để giảng dạy, giúp các em học sinh có thể tự đánh giá năng lực của bản thân và tìm ra những điểm cần cải thiện. Đồng thời, việc này cũng giúp các bạn học sinh lớp dưới có thể tham khảo để chuẩn bị cho kỳ thi tốt nghiệp THPT trong tương lai.

File nguyên tắc ghép trục xét sự biến thiên của hàm hợp g = f(u(x)) PDF Chi Tiết